티스토리 뷰
728x90
기본적인 컨셉
Support set
- Support set is a small set of smaples → It is too small for training a model.
- Every class has at most a few samples.
- The support set can only provied additional information at test time.
Query Set
- Query samples are never seen before.
- Query samples are from unkonwn classes.
Traditional supervised learning
- Test samples are never seen before.
- Test samples are from known classes.
Few-shot learning
- Few-shot learning is the problem of making predictons based on a limited number of samples.
- The goal of few-shot learning is not to let the model recognize the images in the training set and then generalize to the test set.
Meta learning
- The goal is learn to learn.
- The goal is to know the similarity and difference between objects.
- The model has learned the similarity and difference between objects.
기본 개념 정리
- Few-shot learning is a kind of meta learning.
- Meta learning: learn to learn
- Traditional supervised learning asks the model to recognize the training data and then genralize to unseeen test data.
K-way n-shot Support Set
- K-way: the support set has k classes
- n-shot: every class has n samples
way의 수가 늘어날수록, 예측 정확도는 떨어집니다.
3가지 보단 6가지일 때의 경우가 더 어렵다고 짐작이 갑니다.
shots의 수가 늘어날수록, 예측 정확도는 올라갑니다.
samples 수가 늘어날수록 정확도가 올라간다고 생각할 수 있습니다.
자료 출처: https://youtu.be/hE7eGew4eeg
728x90
'AI > Deep Learning' 카테고리의 다른 글
Pretraining and Fine-tuning (0) | 2022.11.25 |
---|---|
Siamese Networks for Pairwise Similarity (0) | 2022.11.25 |
딥러닝 복습과 SENet 내용 복습 (0) | 2022.11.20 |
Meta learning, training 과정, bi-level optimization (0) | 2022.11.16 |
Autoencoder란? - PyTorch로 구현하기 (0) | 2022.11.08 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 도커 컨테이너
- Unsupervised learning
- prompt learning
- 구글드라이브다운
- 프롬프트
- 파이썬 클래스 계층 구조
- 구글드라이브서버다운
- clip
- 도커
- support set
- NLP
- stylegan
- python
- 퓨샷러닝
- few-shot learning
- 파이썬 클래스 다형성
- style transfer
- 구글드라이브서버연동
- 서버구글드라이브연동
- 구글드라이브연동
- 서버에다운
- 파이썬 딕셔너리
- CNN
- 딥러닝
- vscode 자동 저장
- docker
- cs231n
- Prompt
- 파이썬
- 데이터셋다운로드
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
글 보관함
250x250