Paper link: arxiv.org/abs/2307.11978 Code link: github.com/CEWu/PTNL 이 논문은 실험으로 결과를 입증하고 설득하는 형식이라서 table을 통해 설명을 이어갈 것 같습니다. 이걸 일주일 동안 붙잡으며 읽은 결과, 복잡한 architecture 그림과 복잡한 수식의 method가 없어서 겉으로 보기엔 쉬워 보이나 의외로 쉬운 논문은 아니고 vision-language 쪽을 한 번 싹 정리하며 unsupervised 까지 맛보고 싶다면 좋은 논문인 것 같아 필요하다고 판단된다면 추천 드리는 논문입니다. Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels? CLIP과 같은 vision..
최근 NLP를 공부하면서 프롬프트(Prompt)라는 것을 알게 되었고, 현재도 프롬프트 러닝에 대해 이해하기 위해 노력 중이다. 일단 자연어처리 수업을 들으며 정확히는 아니더라도 NLP의 개념과 흐름에 대해 전반적으로 배우고 있는게 많은 도움이 되고 있다. 특히 Pre-train, Fine-tuning의 모델인 BERT를 공부한게 가장 잘한 것 같다. BERT는 prompt-based NLP가 시작하는 지점이라고 말하기도 한다. NLP의 패러다임을 간단히 살펴보면 아래와 같다. a. Fully Supervised Learning (Non-Neural Network) - Features b. Fully Supervised Learning (Neural Network) - Architecture (e.g. ..
- Total
- Today
- Yesterday
- 데이터셋다운로드
- 파이썬 클래스 다형성
- Unsupervised learning
- 퓨샷러닝
- 프롬프트
- cs231n
- few-shot learning
- 서버에다운
- style transfer
- 구글드라이브서버연동
- 구글드라이브연동
- CNN
- 구글드라이브서버다운
- vscode 자동 저장
- 파이썬
- prompt learning
- python
- NLP
- 서버구글드라이브연동
- Prompt
- support set
- stylegan
- 구글드라이브다운
- clip
- 파이썬 딕셔너리
- 도커
- 파이썬 클래스 계층 구조
- 딥러닝
- 도커 컨테이너
- docker
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |