What's in a "Domain"

    728x90

     

    What's in a "Domain"

    Mathematically, joint distribution over inputs and outputs differs over domains 1 and 2

    $P_{d1}(X,Y) \ne P_{d2}(X,Y)$

     

    예를 들어,

    • Content, whit is being discussed
    • Style, the way in which it is being discussed
    • Labeling Standards, the way thtat the same data is labeled

     

    Types of Domian Shift

    • Covariate Shift: The input changes but not the labeling

    $P_{d1}(X) \ne P_{d2}(X)$

    $P_{d1}(Y|X) = P_{d2}(Y|X)$

    • Concept Shift: The conditional distribution of labels changes (e.g. different labeling standards)

    $P_{d1}(Y|X) \ne P_{d2}(Y|X)$

     

    Domian Adaptation

    • Train on many domians, or a high-resourced domain

    • Test on a low-resourced domain

    • Supervised or unsupervised adaptation

     

    Domian Robustness

    • Train on many domains and do well on all of them

    • Robustness to minority domains
    • Zero-shot robustness to domains not in training data

     

    출처: http://phontron.com/class/anlp2021/schedule/multitask.html

     

    728x90

    'AI > Deep Learning' 카테고리의 다른 글

    Open Set Learning이란?  (0) 2023.04.14
    Fine-Grained Image Classification이란?  (0) 2023.04.14
    Zero-shot, Few-shot and Unsupervised Learning  (0) 2023.03.18
    밑시딥3 정리  (0) 2023.03.08
    Pretraining and Fine-tuning  (0) 2022.11.25

    댓글