티스토리 뷰
728x90
What's in a "Domain"
Mathematically, joint distribution over inputs and outputs differs over domains 1 and 2
$P_{d1}(X,Y) \ne P_{d2}(X,Y)$
예를 들어,
- Content, whit is being discussed
- Style, the way in which it is being discussed
- Labeling Standards, the way thtat the same data is labeled
Types of Domian Shift
- Covariate Shift: The input changes but not the labeling
$P_{d1}(X) \ne P_{d2}(X)$
$P_{d1}(Y|X) = P_{d2}(Y|X)$
- Concept Shift: The conditional distribution of labels changes (e.g. different labeling standards)
$P_{d1}(Y|X) \ne P_{d2}(Y|X)$
Domian Adaptation
- Train on many domians, or a high-resourced domain
- Test on a low-resourced domain
- Supervised or unsupervised adaptation
Domian Robustness
- Train on many domains and do well on all of them
- Robustness to minority domains
- Zero-shot robustness to domains not in training data
출처: http://phontron.com/class/anlp2021/schedule/multitask.html
728x90
'AI > Deep Learning' 카테고리의 다른 글
Open Set Learning이란? (0) | 2023.04.14 |
---|---|
Fine-Grained Image Classification이란? (0) | 2023.04.14 |
Zero-shot, Few-shot and Unsupervised Learning (0) | 2023.03.18 |
밑시딥3 정리 (0) | 2023.03.08 |
Pretraining and Fine-tuning (0) | 2022.11.25 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 파이썬 클래스 계층 구조
- 딥러닝
- 서버에다운
- 프롬프트
- vscode 자동 저장
- 데이터셋다운로드
- support set
- 도커
- cs231n
- 퓨샷러닝
- docker
- prompt learning
- 구글드라이브서버다운
- 구글드라이브연동
- Unsupervised learning
- stylegan
- python
- Prompt
- 도커 컨테이너
- 서버구글드라이브연동
- CNN
- 파이썬 클래스 다형성
- few-shot learning
- style transfer
- 구글드라이브다운
- 파이썬
- 구글드라이브서버연동
- 파이썬 딕셔너리
- NLP
- clip
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함
250x250