티스토리 뷰
728x90
내용 출처: CS5670
Local features: main components
- Detection: Identify the interest points.
- Description: Extract vector feature descriptor surrounding each interest point.
- Matching: Determine correspondence between descriptors in two views.
Harris features(in red)
Image transformations
- Geometric: Rotation, Scale
- Photo metric: Intensity change
Invariance and equivariance
We want corner location to be invariant to photometric transformations and equivariant to geometric transformations
- Invariance: image is transformed and corner locations do not change
- equivariance: if we have two transformed versions of the same image, features should be detected in corresponding locations
- (Sometimes “invariant” and “equivariant” are both referred to as “invariant”)
- (Sometimes “equivariant” is called “covariant”)
Invariance와 Equivariance는 서로 반대되는 개념입니다. Invariance는 불변성이라는 뜻으로, 함수의 입력 값에 따라 출력 값이 바뀌지 않는다는 듯입니다. 따라서 trainslation invariance는 입력의 위치가 변해도 출력이 변하지 않는다는 의미입니다. 예시로 max pooling의 개념이 대표적인 small translation invariance 함수입니다.
내용 출처: CNN의 stationarity와 locality
Harris detector invariance properties
- Image translation
- Derivatives and window function are equivariant
- Corner location is equivariant w.r.t translation
- Image rotation
- Second moment ellipse rotates but its shape (i.e. eigenvalues) remanins the same
- Corner location is euqivariant w.r.t image rotation
- Affine intensity change
- Partially invariant to affine intensity change
- scailing
- Neither invariant nor equivariant to scaling
Scale invariant detection
- Key idea: find scale that gives local maximum of f
- in both position and scale
- One definition of f: the Harris operator
Automatic scale selection
- Normalize: rescale to fixed size
Implementation
- Instead of computing f for larger and larger window, we can implement using a fixed window size with a Gaussian pyramid.
Feature extraction: Corners and blobs
Another common definition of f
- The Laplacian of gaussian (LoG)
$\nabla^2g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$
(very similar to a Difference of Gasussians (DoG) - i.e a Gaussian minus a slightly smaller Gaussian)
Laplacian of Gaussian
- “Blob” detector
- Find maxima and minima of LoG operator in sapce and scale
Scale selection
- At what scale does the Laplacian achieve a maximum response for a binary circle of radius $r$?
Characteristic scale
- We define the characteristic scale as the scale that produces peak of Laplacian response
Find local maxima in 3D position-sclae space
Scale-space blob detector: Example
Scale Invaraint Detection
- Functions for determining scale
f = Kernel * Image
- kernels: $\nabla^2g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$ (Laplacian)
$DoG = G(x,y,k\sigma)-G(x,y,\sigma)$ (Difference of Gaussians)
where Gaussian
$G(x,y,\sigma) = \frac{1}{2\pi \sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$
- Note: The LoG and DoG operators are both rotation equivariant
Feature descriptors
We know how to detect good points
- Next question: How to match them?
- Answer: Come up with a descriptor for each point, find similar descriptors between the two images
728x90
'AI > Computer Vision' 카테고리의 다른 글
[CS5670] Lecture 7: Transformations and warping (0) | 2022.06.24 |
---|---|
[CS5670] Lecture 6: Feature Descriptors and Feature Matching (0) | 2022.06.23 |
Aliasing(엘리어싱) - 발생 이유, 결과, 방지 방법 (0) | 2022.06.01 |
[CS5670] Lecture 4: Local features & Harris corner detection (0) | 2022.05.23 |
[CS5670] Lecture 3: Image Resampling & Interpolation (0) | 2022.05.23 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 퓨샷러닝
- clip
- few-shot learning
- 딥러닝
- 구글드라이브연동
- 파이썬
- 구글드라이브서버다운
- CNN
- style transfer
- docker
- 파이썬 클래스 계층 구조
- vscode 자동 저장
- prompt learning
- 구글드라이브다운
- 파이썬 클래스 다형성
- stylegan
- NLP
- 파이썬 딕셔너리
- 서버구글드라이브연동
- Prompt
- 구글드라이브서버연동
- support set
- 도커 컨테이너
- Unsupervised learning
- 프롬프트
- python
- 데이터셋다운로드
- 도커
- cs231n
- 서버에다운
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함
250x250